Code
import MLJ:predict
using MLJ
import MLJ:predict
using MLJ
= @load_boston; X, y
= @load GaussianMixtureRegressor pkg = "BetaML"
modelType= modelType()
gmr
= MLJ.fit(gmr, 1, X, y); (fitResults, cache, report)
import BetaML ✔
Iter. 1: Var. of the post 21.74887448784977 Log-likelihood -21687.09917379566
[ Info: For silent loading, specify `verbosity=0`.
= predict(gmr, fitResults, X)
y_resrmse(y_res,y)
7.9566567641159605