Code
include("./olivetti-face-code/1-dataprocessing.jl")
import MLJ: transform, inverse_transform
using MLJ,DataFrames,CSV,Random,JLSO,GLMakie
Random.seed!(4545343)
TaskLocalRNG()
include("./olivetti-face-code/1-dataprocessing.jl")
import MLJ: transform, inverse_transform
using MLJ,DataFrames,CSV,Random,JLSO,GLMakie
Random.seed!(4545343)
TaskLocalRNG()
=load_olivetti_faces() (Xtrain, Xtest), (ytrain, ytest)
((320×4096 DataFrame Row │ x1 x2 x3 x4 x5 x6 x7 ⋯ │ Float64 Float64 Float64 Float64 Float64 Float64 Float64 ⋯ ─────┼────────────────────────────────────────────────────────────────────────── 1 │ 0.595041 0.640496 0.615702 0.644628 0.68595 0.72314 0.731405 ⋯ 2 │ 0.103306 0.219008 0.177686 0.219008 0.392562 0.57438 0.669422 3 │ 0.289256 0.338843 0.417355 0.504132 0.553719 0.561983 0.582645 4 │ 0.528926 0.797521 0.826446 0.822314 0.822314 0.818182 0.805785 5 │ 0.161157 0.202479 0.268595 0.334711 0.384298 0.392562 0.396694 ⋯ 6 │ 0.169422 0.293388 0.561983 0.677686 0.727273 0.756198 0.768595 7 │ 0.136364 0.177686 0.235537 0.289256 0.334711 0.363636 0.396694 8 │ 0.768595 0.756198 0.743802 0.743802 0.752066 0.747934 0.735537 9 │ 0.144628 0.210744 0.285124 0.342975 0.392562 0.404959 0.409091 ⋯ 10 │ 0.566116 0.595041 0.603306 0.619835 0.636364 0.640496 0.661157 11 │ 0.524793 0.53719 0.578512 0.628099 0.669422 0.690083 0.68595 ⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 311 │ 0.181818 0.338843 0.355372 0.404959 0.438017 0.458678 0.471074 312 │ 0.454545 0.528926 0.644628 0.747934 0.780992 0.780992 0.801653 ⋯ 313 │ 0.553719 0.607438 0.636364 0.64876 0.652893 0.64876 0.673554 314 │ 0.0909091 0.136364 0.177686 0.231405 0.363636 0.504132 0.541322 315 │ 0.252066 0.252066 0.252066 0.252066 0.256198 0.239669 0.235537 316 │ 0.326446 0.483471 0.524793 0.599174 0.665289 0.702479 0.702479 ⋯ 317 │ 0.53719 0.57438 0.553719 0.615702 0.38843 0.487603 0.690083 318 │ 0.128099 0.18595 0.247934 0.31405 0.38843 0.46281 0.520661 319 │ 0.586777 0.702479 0.731405 0.731405 0.743802 0.772727 0.793388 320 │ 0.136364 0.107438 0.0909091 0.115702 0.115702 0.119835 0.181818 ⋯ 4089 columns and 299 rows omitted, 80×4096 DataFrame Row │ x1 x2 x3 x4 x5 x6 x7 x ⋯ │ Float64 Float64 Float64 Float64 Float64 Float64 Float64 F ⋯ ─────┼────────────────────────────────────────────────────────────────────────── 1 │ 0.219008 0.235537 0.252066 0.326446 0.392562 0.553719 0.714876 0 ⋯ 2 │ 0.194215 0.268595 0.367769 0.487603 0.545455 0.561983 0.578512 0 3 │ 0.210744 0.206612 0.194215 0.181818 0.219008 0.239669 0.256198 0 4 │ 0.392562 0.475207 0.661157 0.590909 0.471074 0.545455 0.673554 0 5 │ 0.719008 0.727273 0.72314 0.714876 0.72314 0.731405 0.739669 0 ⋯ 6 │ 0.429752 0.458678 0.549587 0.623967 0.673554 0.714876 0.72314 0 7 │ 0.289256 0.157025 0.14876 0.190083 0.169422 0.194215 0.404959 0 8 │ 0.628099 0.665289 0.68595 0.694215 0.719008 0.731405 0.752066 0 9 │ 0.479339 0.549587 0.628099 0.690083 0.677686 0.652893 0.640496 0 ⋯ 10 │ 0.677686 0.677686 0.681818 0.706612 0.731405 0.739669 0.756198 0 11 │ 0.123967 0.132231 0.11157 0.11157 0.119835 0.136364 0.136364 0 ⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 71 │ 0.123967 0.128099 0.115702 0.136364 0.115702 0.107438 0.115702 0 72 │ 0.384298 0.22314 0.22314 0.305785 0.429752 0.508265 0.557851 0 ⋯ 73 │ 0.409091 0.590909 0.657025 0.681818 0.694215 0.731405 0.760331 0 74 │ 0.487603 0.330578 0.252066 0.38843 0.785124 0.789256 0.780992 0 75 │ 0.285124 0.285124 0.272727 0.214876 0.169422 0.165289 0.264463 0 76 │ 0.136364 0.132231 0.123967 0.119835 0.11157 0.128099 0.132231 0 ⋯ 77 │ 0.243802 0.243802 0.247934 0.247934 0.252066 0.256198 0.256198 0 78 │ 0.603306 0.586777 0.541322 0.603306 0.603306 0.607438 0.64876 0 79 │ 0.772727 0.764463 0.752066 0.764463 0.785124 0.793388 0.797521 0 80 │ 0.475207 0.491736 0.5 0.512397 0.524793 0.528926 0.545455 0 ⋯ 4089 columns and 59 rows omitted), (CategoricalArrays.CategoricalValue{Int64, UInt32}[27, 3, 39, 10, 23, 24, 23, 30, 23, 14 … 21, 26, 5, 35, 28, 9, 31, 0, 15, 37], CategoricalArrays.CategoricalValue{Int64, UInt32}[6, 35, 6, 31, 5, 4, 3, 2, 19, 4 … 32, 29, 22, 36, 12, 32, 16, 14, 3, 20]))
= @load PCA pkg=MultivariateStats
PCA function make_model(Xtr)
return (dim)->begin
= PCA(maxoutdim=dim)
model = machine(model, Xtr) |> fit!
mach try
save("./olivetti-face-code/models/of-model-$(dim)pcs.jlso",:pca=>mach)
JLSO.@info "$(dim) dimension pca model saved"
catch e
@warn "$(e) has problem"
end
end
end
=make_model(Xtrain)
make_ol_modelmake_ol_model.([1,2,3,100])
import MLJMultivariateStatsInterface ✔
[ Info: For silent loading, specify `verbosity=0`.
[ Info: Training machine(PCA(maxoutdim = 1, …), …).
[ Info: 1 dimension pca model saved
[ Info: Training machine(PCA(maxoutdim = 2, …), …).
[ Info: 2 dimension pca model saved
[ Info: Training machine(PCA(maxoutdim = 3, …), …).
[ Info: 3 dimension pca model saved
[ Info: Training machine(PCA(maxoutdim = 100, …), …).
[ Info: 100 dimension pca model saved
4-element Vector{Nothing}:
nothing
nothing
nothing
nothing
第三行是降维到 100的图片, 最后一行是原始图片
include("./olivetti-face-code/3-transform-reconstruct-methods.jl")
=ytrain|>Array|>levels
cat=size(Xtrain)
rows,cols
=rand(1:rows,20)
pick20=Xtrain[pick20,:]
pickXtrain=ytrain[pick20]
pickytrain
=transform_to_2d(pickXtrain)
pcaData=reconstruct_data(pcaData)
reconstructImgs
=transform_to_3d(pickXtrain)
pcaData3=reconstruct_data(pcaData3)
reconstructImgs3
=transform_to_pcadata1(100)
transform_to_100d=transform_to_100d(pickXtrain)
pcaData100=reconstruct_data(pcaData100)
reconstructImgs100
=vcat(reconstructImgs,reconstructImgs3,reconstructImgs100,pickXtrain) df
[ Info: 2 pca proceeding...
[ Info: imgs reconstructing from 2 dimension
[ Info: 3 pca proceeding...
[ Info: imgs reconstructing from 3 dimension
[ Info: 100 pca proceeding...
[ Info: imgs reconstructing from 100 dimension
Row | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | x14 | x15 | x16 | x17 | x18 | x19 | x20 | x21 | x22 | x23 | x24 | x25 | x26 | x27 | x28 | x29 | x30 | x31 | x32 | x33 | x34 | x35 | x36 | x37 | x38 | x39 | x40 | x41 | x42 | x43 | x44 | x45 | x46 | x47 | x48 | x49 | x50 | x51 | x52 | x53 | x54 | x55 | x56 | x57 | x58 | x59 | x60 | x61 | x62 | x63 | x64 | x65 | x66 | x67 | x68 | x69 | x70 | x71 | x72 | x73 | x74 | x75 | x76 | x77 | x78 | x79 | x80 | x81 | x82 | x83 | x84 | x85 | x86 | x87 | x88 | x89 | x90 | x91 | x92 | x93 | x94 | x95 | x96 | x97 | x98 | x99 | x100 | ⋯ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | Float64 | ⋯ | |
1 | 0.347498 | 0.356433 | 0.375264 | 0.39954 | 0.423023 | 0.452978 | 0.482274 | 0.503785 | 0.519725 | 0.526426 | 0.534472 | 0.539163 | 0.547752 | 0.548612 | 0.551928 | 0.550904 | 0.551664 | 0.551791 | 0.551633 | 0.553009 | 0.55499 | 0.553559 | 0.554242 | 0.549705 | 0.548917 | 0.549303 | 0.547618 | 0.548721 | 0.549941 | 0.548578 | 0.551999 | 0.555619 | 0.554749 | 0.551963 | 0.55098 | 0.546373 | 0.545315 | 0.541134 | 0.536055 | 0.52792 | 0.522628 | 0.516831 | 0.511274 | 0.504655 | 0.499186 | 0.492699 | 0.484203 | 0.473755 | 0.467841 | 0.459916 | 0.455482 | 0.448347 | 0.439979 | 0.425104 | 0.411437 | 0.39844 | 0.382408 | 0.353639 | 0.31849 | 0.290463 | 0.265268 | 0.24943 | 0.241055 | 0.238127 | 0.351332 | 0.360198 | 0.386193 | 0.412789 | 0.435357 | 0.465185 | 0.494089 | 0.513728 | 0.530586 | 0.537144 | 0.547946 | 0.551217 | 0.559378 | 0.561427 | 0.564977 | 0.567751 | 0.566366 | 0.565085 | 0.56924 | 0.573174 | 0.572161 | 0.569604 | 0.566815 | 0.564914 | 0.564524 | 0.557596 | 0.558352 | 0.557152 | 0.557154 | 0.556278 | 0.560522 | 0.565832 | 0.563424 | 0.56306 | 0.565221 | 0.564248 | ⋯ |
2 | 0.517323 | 0.574701 | 0.637824 | 0.689222 | 0.72297 | 0.752127 | 0.772595 | 0.782153 | 0.785537 | 0.786146 | 0.783327 | 0.780133 | 0.779794 | 0.77967 | 0.781213 | 0.783158 | 0.785168 | 0.787799 | 0.787414 | 0.786651 | 0.785654 | 0.78473 | 0.782535 | 0.778389 | 0.77507 | 0.774482 | 0.76858 | 0.763289 | 0.759652 | 0.754611 | 0.752834 | 0.75236 | 0.752247 | 0.750873 | 0.749019 | 0.74466 | 0.739307 | 0.73623 | 0.730776 | 0.723315 | 0.71545 | 0.708287 | 0.700588 | 0.692186 | 0.684442 | 0.678492 | 0.671835 | 0.660478 | 0.649346 | 0.641482 | 0.629974 | 0.617705 | 0.607259 | 0.598648 | 0.587301 | 0.570553 | 0.550199 | 0.523786 | 0.479269 | 0.431485 | 0.393957 | 0.361259 | 0.324836 | 0.291902 | 0.528134 | 0.591601 | 0.654956 | 0.704336 | 0.738806 | 0.766358 | 0.782817 | 0.788165 | 0.791302 | 0.791121 | 0.788372 | 0.784759 | 0.782904 | 0.783305 | 0.784144 | 0.786172 | 0.788562 | 0.791007 | 0.792148 | 0.791703 | 0.791692 | 0.789554 | 0.786332 | 0.783966 | 0.782476 | 0.779952 | 0.77532 | 0.76947 | 0.765259 | 0.76029 | 0.757802 | 0.756306 | 0.756551 | 0.756472 | 0.754564 | 0.753349 | ⋯ |
3 | 0.455477 | 0.50084 | 0.552429 | 0.598455 | 0.632881 | 0.665276 | 0.691794 | 0.709252 | 0.719167 | 0.724507 | 0.727599 | 0.729214 | 0.732596 | 0.734849 | 0.738048 | 0.740483 | 0.743513 | 0.746724 | 0.747753 | 0.748665 | 0.749276 | 0.749044 | 0.74841 | 0.745529 | 0.743752 | 0.743925 | 0.740204 | 0.737341 | 0.735166 | 0.73202 | 0.73156 | 0.732154 | 0.732169 | 0.731377 | 0.730696 | 0.7277 | 0.724582 | 0.722473 | 0.718304 | 0.712185 | 0.706117 | 0.700641 | 0.694664 | 0.687884 | 0.681925 | 0.676942 | 0.67095 | 0.66163 | 0.653022 | 0.645484 | 0.635839 | 0.625602 | 0.61635 | 0.606994 | 0.595671 | 0.579182 | 0.55828 | 0.530665 | 0.489583 | 0.447237 | 0.411732 | 0.3807 | 0.345804 | 0.314192 | 0.463803 | 0.51405 | 0.566475 | 0.610999 | 0.646321 | 0.677711 | 0.701414 | 0.715647 | 0.725785 | 0.730841 | 0.734172 | 0.735186 | 0.737466 | 0.7405 | 0.743267 | 0.746521 | 0.749267 | 0.751957 | 0.754201 | 0.755408 | 0.756075 | 0.755203 | 0.753704 | 0.752193 | 0.75157 | 0.749529 | 0.746794 | 0.742832 | 0.740361 | 0.73699 | 0.736155 | 0.736794 | 0.736799 | 0.736963 | 0.736569 | 0.736201 | ⋯ |
4 | 0.492681 | 0.545701 | 0.604579 | 0.65418 | 0.688534 | 0.719206 | 0.742301 | 0.755276 | 0.761411 | 0.764097 | 0.763782 | 0.762652 | 0.763831 | 0.764809 | 0.767088 | 0.769348 | 0.771877 | 0.774853 | 0.775133 | 0.775105 | 0.774789 | 0.774207 | 0.772673 | 0.769139 | 0.766482 | 0.766228 | 0.761244 | 0.756928 | 0.75385 | 0.749606 | 0.74831 | 0.74823 | 0.748198 | 0.74714 | 0.745818 | 0.742113 | 0.737702 | 0.735115 | 0.73026 | 0.723455 | 0.716371 | 0.709971 | 0.70303 | 0.695349 | 0.688389 | 0.682912 | 0.676623 | 0.666207 | 0.656128 | 0.648421 | 0.6376 | 0.626154 | 0.616217 | 0.607426 | 0.596155 | 0.579425 | 0.558691 | 0.531773 | 0.488627 | 0.442875 | 0.405965 | 0.37359 | 0.337113 | 0.303975 | 0.502506 | 0.561214 | 0.620418 | 0.668125 | 0.70333 | 0.73264 | 0.752192 | 0.761361 | 0.76744 | 0.769558 | 0.769319 | 0.767711 | 0.767541 | 0.769146 | 0.770824 | 0.773414 | 0.776077 | 0.778742 | 0.780323 | 0.78054 | 0.780879 | 0.779354 | 0.776937 | 0.774965 | 0.773855 | 0.771683 | 0.767801 | 0.762719 | 0.759217 | 0.754892 | 0.753002 | 0.752331 | 0.752536 | 0.75258 | 0.751278 | 0.750458 | ⋯ |
5 | 0.29635 | 0.316432 | 0.342945 | 0.379661 | 0.420254 | 0.463932 | 0.508857 | 0.550194 | 0.578874 | 0.598902 | 0.619163 | 0.635091 | 0.648517 | 0.658904 | 0.667377 | 0.67265 | 0.679779 | 0.685978 | 0.69198 | 0.698093 | 0.70337 | 0.705796 | 0.709692 | 0.711473 | 0.714286 | 0.716825 | 0.719362 | 0.722845 | 0.724127 | 0.726413 | 0.728762 | 0.731683 | 0.732428 | 0.734233 | 0.737424 | 0.739393 | 0.742698 | 0.744453 | 0.744741 | 0.743661 | 0.743079 | 0.743139 | 0.742534 | 0.740902 | 0.740493 | 0.739163 | 0.736219 | 0.733849 | 0.732359 | 0.726005 | 0.720441 | 0.715595 | 0.709853 | 0.700122 | 0.689728 | 0.672796 | 0.648359 | 0.61731 | 0.585088 | 0.554974 | 0.522202 | 0.490979 | 0.451311 | 0.413481 | 0.298332 | 0.32124 | 0.34822 | 0.383696 | 0.426408 | 0.470685 | 0.51574 | 0.556524 | 0.58668 | 0.607998 | 0.628121 | 0.643165 | 0.656573 | 0.668414 | 0.677084 | 0.68445 | 0.689845 | 0.694771 | 0.699857 | 0.705373 | 0.708829 | 0.712634 | 0.717139 | 0.718512 | 0.720587 | 0.721878 | 0.723959 | 0.725047 | 0.727263 | 0.728109 | 0.73073 | 0.736514 | 0.736631 | 0.737769 | 0.741301 | 0.743875 | ⋯ |
6 | 0.273376 | 0.291233 | 0.315289 | 0.351801 | 0.394404 | 0.440457 | 0.488757 | 0.53444 | 0.566325 | 0.589109 | 0.612345 | 0.630829 | 0.645824 | 0.657897 | 0.667388 | 0.673468 | 0.681562 | 0.68857 | 0.695628 | 0.702718 | 0.708802 | 0.711833 | 0.716513 | 0.719324 | 0.722957 | 0.72594 | 0.729544 | 0.733969 | 0.735672 | 0.738883 | 0.741491 | 0.744642 | 0.745594 | 0.748051 | 0.752019 | 0.755072 | 0.759475 | 0.762135 | 0.763357 | 0.763406 | 0.763834 | 0.764994 | 0.765403 | 0.764761 | 0.765395 | 0.764887 | 0.762721 | 0.761787 | 0.761482 | 0.755387 | 0.750232 | 0.746205 | 0.741081 | 0.731685 | 0.721646 | 0.704368 | 0.678884 | 0.647252 | 0.616316 | 0.587522 | 0.554519 | 0.522137 | 0.47958 | 0.438419 | 0.274456 | 0.295104 | 0.319089 | 0.354129 | 0.399222 | 0.446121 | 0.494946 | 0.540495 | 0.574049 | 0.598419 | 0.621257 | 0.638863 | 0.654002 | 0.667628 | 0.677388 | 0.68559 | 0.691805 | 0.69746 | 0.702958 | 0.709111 | 0.713233 | 0.718073 | 0.723841 | 0.725804 | 0.728387 | 0.730687 | 0.733447 | 0.735313 | 0.738258 | 0.73974 | 0.742658 | 0.749098 | 0.749415 | 0.750782 | 0.754889 | 0.758079 | ⋯ |
7 | 0.389424 | 0.423229 | 0.463541 | 0.504851 | 0.541002 | 0.577523 | 0.611146 | 0.637846 | 0.65518 | 0.666142 | 0.675991 | 0.683181 | 0.690643 | 0.695892 | 0.701089 | 0.704405 | 0.708857 | 0.713027 | 0.715869 | 0.71877 | 0.721219 | 0.721924 | 0.723074 | 0.721862 | 0.721873 | 0.722951 | 0.721706 | 0.721459 | 0.720776 | 0.71978 | 0.720595 | 0.722235 | 0.722477 | 0.722556 | 0.72332 | 0.72211 | 0.721532 | 0.720768 | 0.718232 | 0.713904 | 0.709951 | 0.706548 | 0.702623 | 0.697796 | 0.69396 | 0.690273 | 0.685295 | 0.678537 | 0.672766 | 0.665653 | 0.657837 | 0.649807 | 0.64193 | 0.632128 | 0.621026 | 0.604562 | 0.582594 | 0.553619 | 0.51621 | 0.479274 | 0.445369 | 0.415104 | 0.379869 | 0.347492 | 0.395106 | 0.432745 | 0.474102 | 0.51422 | 0.551629 | 0.587799 | 0.619853 | 0.644412 | 0.66248 | 0.673761 | 0.683846 | 0.690283 | 0.69709 | 0.703395 | 0.708434 | 0.713215 | 0.716733 | 0.720049 | 0.723472 | 0.726457 | 0.728084 | 0.728886 | 0.729583 | 0.729139 | 0.729548 | 0.728496 | 0.727772 | 0.72587 | 0.725305 | 0.723664 | 0.724415 | 0.727254 | 0.727169 | 0.727672 | 0.728901 | 0.729611 | ⋯ |
8 | 0.436103 | 0.474321 | 0.519536 | 0.561172 | 0.593157 | 0.624795 | 0.651505 | 0.669306 | 0.68009 | 0.685402 | 0.689172 | 0.69113 | 0.695395 | 0.697179 | 0.70029 | 0.701935 | 0.704398 | 0.706894 | 0.707566 | 0.708464 | 0.709265 | 0.708722 | 0.708269 | 0.704938 | 0.703272 | 0.703439 | 0.700014 | 0.697851 | 0.696319 | 0.693433 | 0.693731 | 0.694914 | 0.694726 | 0.693458 | 0.69263 | 0.689188 | 0.686367 | 0.683738 | 0.679282 | 0.672629 | 0.666607 | 0.660945 | 0.654942 | 0.648085 | 0.64211 | 0.636732 | 0.630147 | 0.620439 | 0.612247 | 0.604602 | 0.595969 | 0.586271 | 0.577131 | 0.566618 | 0.554781 | 0.539038 | 0.519239 | 0.491455 | 0.451434 | 0.411848 | 0.378459 | 0.350638 | 0.32144 | 0.296014 | 0.443617 | 0.485718 | 0.533112 | 0.574047 | 0.606519 | 0.637303 | 0.661646 | 0.676451 | 0.687578 | 0.692602 | 0.69715 | 0.69834 | 0.701622 | 0.704259 | 0.707065 | 0.71013 | 0.711947 | 0.713751 | 0.716338 | 0.718028 | 0.718281 | 0.716953 | 0.715053 | 0.713398 | 0.712766 | 0.709623 | 0.707521 | 0.704033 | 0.701984 | 0.699049 | 0.699212 | 0.700725 | 0.700219 | 0.700251 | 0.700312 | 0.699754 | ⋯ |
9 | 0.317283 | 0.332209 | 0.355093 | 0.386241 | 0.419365 | 0.457116 | 0.495344 | 0.528193 | 0.551452 | 0.56576 | 0.580815 | 0.59194 | 0.603336 | 0.609612 | 0.615867 | 0.618397 | 0.622763 | 0.62632 | 0.62966 | 0.63374 | 0.637613 | 0.638367 | 0.640894 | 0.639941 | 0.641215 | 0.642829 | 0.64357 | 0.646069 | 0.647357 | 0.648092 | 0.65094 | 0.654192 | 0.654234 | 0.654044 | 0.655436 | 0.65456 | 0.656009 | 0.65519 | 0.65316 | 0.649025 | 0.646424 | 0.643961 | 0.64123 | 0.637455 | 0.634873 | 0.63131 | 0.625953 | 0.620097 | 0.61673 | 0.609697 | 0.60467 | 0.59887 | 0.592007 | 0.580009 | 0.568184 | 0.552979 | 0.532206 | 0.502127 | 0.468704 | 0.43963 | 0.41022 | 0.385766 | 0.359822 | 0.337291 | 0.320017 | 0.336474 | 0.362769 | 0.394247 | 0.428167 | 0.466212 | 0.504371 | 0.536112 | 0.560614 | 0.575597 | 0.591785 | 0.601786 | 0.612995 | 0.620614 | 0.627089 | 0.632475 | 0.634913 | 0.637129 | 0.641833 | 0.646696 | 0.648213 | 0.649264 | 0.650618 | 0.650579 | 0.651596 | 0.649303 | 0.650848 | 0.65098 | 0.652268 | 0.652398 | 0.655767 | 0.661394 | 0.660401 | 0.660887 | 0.663855 | 0.664896 | ⋯ |
10 | 0.287526 | 0.289496 | 0.300971 | 0.32379 | 0.35161 | 0.38716 | 0.424685 | 0.456812 | 0.480717 | 0.494097 | 0.509505 | 0.520473 | 0.533061 | 0.537907 | 0.543671 | 0.544433 | 0.547409 | 0.549342 | 0.551665 | 0.555409 | 0.559388 | 0.559357 | 0.561982 | 0.559843 | 0.561067 | 0.56253 | 0.563498 | 0.567038 | 0.56942 | 0.570358 | 0.574575 | 0.578879 | 0.578469 | 0.577161 | 0.578027 | 0.575953 | 0.577621 | 0.575521 | 0.572645 | 0.567133 | 0.5643 | 0.561131 | 0.558029 | 0.553792 | 0.550851 | 0.546271 | 0.539531 | 0.53248 | 0.529533 | 0.522213 | 0.518992 | 0.513963 | 0.507117 | 0.4928 | 0.47988 | 0.466211 | 0.44788 | 0.417661 | 0.385861 | 0.361643 | 0.336354 | 0.318406 | 0.304273 | 0.294626 | 0.288994 | 0.290593 | 0.308217 | 0.332971 | 0.360687 | 0.396744 | 0.43493 | 0.466252 | 0.491568 | 0.505523 | 0.523176 | 0.5327 | 0.545277 | 0.551571 | 0.557775 | 0.562533 | 0.562936 | 0.563227 | 0.568455 | 0.57404 | 0.574553 | 0.574405 | 0.574592 | 0.57409 | 0.57493 | 0.570208 | 0.572749 | 0.573541 | 0.575403 | 0.576166 | 0.581349 | 0.588441 | 0.586407 | 0.586567 | 0.590222 | 0.590704 | ⋯ |
11 | 0.441812 | 0.486114 | 0.536457 | 0.582573 | 0.6184 | 0.652345 | 0.681004 | 0.701212 | 0.713125 | 0.720222 | 0.725175 | 0.728401 | 0.732738 | 0.736088 | 0.739939 | 0.742928 | 0.746601 | 0.750363 | 0.752082 | 0.753617 | 0.754733 | 0.754901 | 0.754758 | 0.752555 | 0.751295 | 0.751751 | 0.748695 | 0.746396 | 0.744458 | 0.741888 | 0.741555 | 0.742266 | 0.742423 | 0.74207 | 0.74189 | 0.739608 | 0.737174 | 0.735668 | 0.732108 | 0.726734 | 0.721307 | 0.716542 | 0.711212 | 0.705066 | 0.699772 | 0.695332 | 0.689866 | 0.681479 | 0.673606 | 0.666237 | 0.656802 | 0.64706 | 0.638196 | 0.629112 | 0.61804 | 0.601294 | 0.579669 | 0.551692 | 0.511375 | 0.469733 | 0.433975 | 0.402045 | 0.365024 | 0.330983 | 0.449603 | 0.498818 | 0.549586 | 0.594012 | 0.630993 | 0.664083 | 0.690154 | 0.707395 | 0.719647 | 0.726649 | 0.731648 | 0.734285 | 0.737617 | 0.741808 | 0.745267 | 0.749064 | 0.752378 | 0.755577 | 0.758066 | 0.759654 | 0.760766 | 0.760576 | 0.759902 | 0.758774 | 0.758474 | 0.757131 | 0.754797 | 0.751307 | 0.749279 | 0.746291 | 0.745596 | 0.746608 | 0.746767 | 0.747083 | 0.747032 | 0.747067 | ⋯ |
12 | 0.554789 | 0.629173 | 0.70723 | 0.769672 | 0.810644 | 0.842935 | 0.86464 | 0.875544 | 0.878358 | 0.880445 | 0.877424 | 0.874667 | 0.872885 | 0.874811 | 0.877097 | 0.881463 | 0.885406 | 0.890264 | 0.891325 | 0.891096 | 0.89003 | 0.890202 | 0.887948 | 0.885469 | 0.882289 | 0.881942 | 0.875834 | 0.869245 | 0.864192 | 0.858963 | 0.855393 | 0.853541 | 0.854047 | 0.854216 | 0.853131 | 0.85046 | 0.844913 | 0.843619 | 0.839371 | 0.833841 | 0.826375 | 0.820247 | 0.813133 | 0.805431 | 0.798258 | 0.793733 | 0.788981 | 0.779339 | 0.767757 | 0.760297 | 0.746427 | 0.733208 | 0.722795 | 0.717291 | 0.707432 | 0.688612 | 0.664921 | 0.638642 | 0.592085 | 0.537969 | 0.494947 | 0.453505 | 0.401138 | 0.350796 | 0.567201 | 0.650199 | 0.724801 | 0.783073 | 0.825994 | 0.856422 | 0.873182 | 0.879512 | 0.881872 | 0.883331 | 0.878878 | 0.876128 | 0.872611 | 0.874931 | 0.876227 | 0.879164 | 0.884329 | 0.889397 | 0.889879 | 0.888532 | 0.889913 | 0.889461 | 0.887902 | 0.886203 | 0.884994 | 0.885786 | 0.879891 | 0.873234 | 0.868325 | 0.862573 | 0.857703 | 0.85432 | 0.855965 | 0.856339 | 0.85357 | 0.853154 | ⋯ |
13 | 0.396561 | 0.437814 | 0.484407 | 0.53119 | 0.572021 | 0.611343 | 0.647322 | 0.676931 | 0.695621 | 0.708744 | 0.720017 | 0.728739 | 0.736278 | 0.743426 | 0.74952 | 0.754473 | 0.760397 | 0.766106 | 0.77022 | 0.773892 | 0.77672 | 0.77829 | 0.779812 | 0.77997 | 0.780471 | 0.781899 | 0.781098 | 0.780677 | 0.779496 | 0.77888 | 0.778922 | 0.779984 | 0.780644 | 0.781837 | 0.783388 | 0.783587 | 0.783473 | 0.784074 | 0.782626 | 0.779853 | 0.77662 | 0.774304 | 0.771195 | 0.767229 | 0.764216 | 0.761671 | 0.758054 | 0.752899 | 0.747508 | 0.740732 | 0.731933 | 0.723844 | 0.716299 | 0.708239 | 0.69807 | 0.680383 | 0.656193 | 0.626986 | 0.589206 | 0.549749 | 0.512952 | 0.477676 | 0.432906 | 0.390029 | 0.402588 | 0.448932 | 0.494433 | 0.538818 | 0.581717 | 0.620685 | 0.654824 | 0.682324 | 0.701743 | 0.715417 | 0.726034 | 0.734221 | 0.741077 | 0.749267 | 0.755097 | 0.760765 | 0.766106 | 0.77112 | 0.774421 | 0.777277 | 0.779949 | 0.782133 | 0.784318 | 0.784514 | 0.785325 | 0.786465 | 0.785452 | 0.783541 | 0.782999 | 0.781288 | 0.780988 | 0.783211 | 0.783936 | 0.784784 | 0.785874 | 0.787304 | ⋯ |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋱ |
69 | 0.280992 | 0.194215 | 0.301653 | 0.487603 | 0.533058 | 0.541322 | 0.541322 | 0.582645 | 0.615702 | 0.603306 | 0.603306 | 0.657025 | 0.706612 | 0.727273 | 0.710744 | 0.727273 | 0.694215 | 0.702479 | 0.731405 | 0.768595 | 0.805785 | 0.801653 | 0.81405 | 0.81405 | 0.809917 | 0.818182 | 0.809917 | 0.818182 | 0.81405 | 0.822314 | 0.818182 | 0.81405 | 0.822314 | 0.81405 | 0.818182 | 0.822314 | 0.81405 | 0.822314 | 0.818182 | 0.822314 | 0.818182 | 0.809917 | 0.81405 | 0.818182 | 0.81405 | 0.809917 | 0.793388 | 0.780992 | 0.789256 | 0.760331 | 0.756198 | 0.772727 | 0.764463 | 0.719008 | 0.677686 | 0.640496 | 0.615702 | 0.595041 | 0.334711 | 0.289256 | 0.206612 | 0.198347 | 0.318182 | 0.376033 | 0.252066 | 0.194215 | 0.285124 | 0.458678 | 0.516529 | 0.528926 | 0.516529 | 0.570248 | 0.615702 | 0.619835 | 0.590909 | 0.64876 | 0.706612 | 0.727273 | 0.727273 | 0.72314 | 0.698347 | 0.702479 | 0.727273 | 0.772727 | 0.797521 | 0.805785 | 0.822314 | 0.818182 | 0.818182 | 0.822314 | 0.830578 | 0.822314 | 0.822314 | 0.822314 | 0.818182 | 0.818182 | 0.826446 | 0.81405 | 0.826446 | 0.822314 | ⋯ |
70 | 0.123967 | 0.0991735 | 0.123967 | 0.107438 | 0.107438 | 0.128099 | 0.128099 | 0.132231 | 0.14876 | 0.14876 | 0.161157 | 0.181818 | 0.177686 | 0.173554 | 0.181818 | 0.173554 | 0.165289 | 0.18595 | 0.152893 | 0.169422 | 0.157025 | 0.14876 | 0.161157 | 0.165289 | 0.194215 | 0.194215 | 0.210744 | 0.231405 | 0.260331 | 0.280992 | 0.305785 | 0.322314 | 0.322314 | 0.326446 | 0.326446 | 0.342975 | 0.367769 | 0.38843 | 0.38843 | 0.384298 | 0.429752 | 0.450413 | 0.466942 | 0.466942 | 0.471074 | 0.46281 | 0.466942 | 0.466942 | 0.479339 | 0.487603 | 0.495868 | 0.495868 | 0.458678 | 0.450413 | 0.433884 | 0.429752 | 0.384298 | 0.342975 | 0.305785 | 0.247934 | 0.227273 | 0.198347 | 0.181818 | 0.165289 | 0.115702 | 0.103306 | 0.128099 | 0.115702 | 0.128099 | 0.119835 | 0.140496 | 0.157025 | 0.161157 | 0.169422 | 0.157025 | 0.173554 | 0.190083 | 0.190083 | 0.18595 | 0.18595 | 0.165289 | 0.18595 | 0.161157 | 0.18595 | 0.177686 | 0.173554 | 0.173554 | 0.198347 | 0.190083 | 0.198347 | 0.22314 | 0.227273 | 0.256198 | 0.243802 | 0.260331 | 0.280992 | 0.309917 | 0.342975 | 0.359504 | 0.355372 | ⋯ |
71 | 0.603306 | 0.632231 | 0.652893 | 0.673554 | 0.677686 | 0.698347 | 0.731405 | 0.743802 | 0.752066 | 0.77686 | 0.780992 | 0.789256 | 0.793388 | 0.789256 | 0.785124 | 0.793388 | 0.797521 | 0.81405 | 0.81405 | 0.818182 | 0.822314 | 0.818182 | 0.822314 | 0.818182 | 0.830578 | 0.826446 | 0.834711 | 0.826446 | 0.822314 | 0.826446 | 0.822314 | 0.818182 | 0.818182 | 0.830578 | 0.834711 | 0.830578 | 0.822314 | 0.822314 | 0.818182 | 0.805785 | 0.801653 | 0.797521 | 0.801653 | 0.797521 | 0.793388 | 0.793388 | 0.789256 | 0.772727 | 0.760331 | 0.77686 | 0.77686 | 0.772727 | 0.764463 | 0.739669 | 0.72314 | 0.714876 | 0.694215 | 0.636364 | 0.590909 | 0.578512 | 0.557851 | 0.516529 | 0.438017 | 0.309917 | 0.590909 | 0.619835 | 0.64876 | 0.673554 | 0.673554 | 0.698347 | 0.727273 | 0.747934 | 0.764463 | 0.768595 | 0.77686 | 0.780992 | 0.789256 | 0.780992 | 0.780992 | 0.789256 | 0.785124 | 0.797521 | 0.81405 | 0.805785 | 0.818182 | 0.822314 | 0.809917 | 0.809917 | 0.826446 | 0.822314 | 0.830578 | 0.822314 | 0.822314 | 0.830578 | 0.830578 | 0.818182 | 0.81405 | 0.830578 | 0.834711 | 0.822314 | ⋯ |
72 | 0.392562 | 0.524793 | 0.619835 | 0.690083 | 0.739669 | 0.772727 | 0.801653 | 0.818182 | 0.826446 | 0.834711 | 0.826446 | 0.834711 | 0.834711 | 0.830578 | 0.838843 | 0.838843 | 0.834711 | 0.838843 | 0.842975 | 0.847107 | 0.85124 | 0.842975 | 0.85124 | 0.847107 | 0.85124 | 0.85124 | 0.842975 | 0.842975 | 0.842975 | 0.842975 | 0.838843 | 0.834711 | 0.838843 | 0.834711 | 0.838843 | 0.838843 | 0.838843 | 0.838843 | 0.834711 | 0.830578 | 0.822314 | 0.818182 | 0.801653 | 0.797521 | 0.789256 | 0.797521 | 0.77686 | 0.760331 | 0.714876 | 0.644628 | 0.590909 | 0.561983 | 0.491736 | 0.429752 | 0.347107 | 0.347107 | 0.276859 | 0.173554 | 0.173554 | 0.173554 | 0.202479 | 0.202479 | 0.214876 | 0.252066 | 0.475207 | 0.61157 | 0.673554 | 0.714876 | 0.752066 | 0.77686 | 0.81405 | 0.822314 | 0.826446 | 0.834711 | 0.834711 | 0.834711 | 0.830578 | 0.826446 | 0.834711 | 0.834711 | 0.834711 | 0.838843 | 0.847107 | 0.847107 | 0.847107 | 0.847107 | 0.842975 | 0.842975 | 0.842975 | 0.842975 | 0.838843 | 0.842975 | 0.847107 | 0.842975 | 0.842975 | 0.838843 | 0.838843 | 0.838843 | 0.838843 | 0.842975 | ⋯ |
73 | 0.512397 | 0.557851 | 0.619835 | 0.652893 | 0.665289 | 0.681818 | 0.694215 | 0.739669 | 0.760331 | 0.780992 | 0.789256 | 0.785124 | 0.785124 | 0.793388 | 0.793388 | 0.793388 | 0.797521 | 0.793388 | 0.805785 | 0.81405 | 0.81405 | 0.81405 | 0.826446 | 0.834711 | 0.834711 | 0.838843 | 0.830578 | 0.838843 | 0.838843 | 0.842975 | 0.847107 | 0.85124 | 0.85124 | 0.855372 | 0.85124 | 0.847107 | 0.85124 | 0.847107 | 0.838843 | 0.842975 | 0.830578 | 0.818182 | 0.81405 | 0.822314 | 0.809917 | 0.826446 | 0.81405 | 0.809917 | 0.81405 | 0.81405 | 0.809917 | 0.805785 | 0.801653 | 0.793388 | 0.780992 | 0.752066 | 0.727273 | 0.694215 | 0.661157 | 0.582645 | 0.487603 | 0.421488 | 0.338843 | 0.342975 | 0.53719 | 0.586777 | 0.623967 | 0.628099 | 0.64876 | 0.661157 | 0.694215 | 0.735537 | 0.760331 | 0.785124 | 0.780992 | 0.785124 | 0.789256 | 0.793388 | 0.789256 | 0.797521 | 0.801653 | 0.805785 | 0.81405 | 0.81405 | 0.81405 | 0.818182 | 0.822314 | 0.830578 | 0.838843 | 0.834711 | 0.834711 | 0.830578 | 0.847107 | 0.842975 | 0.847107 | 0.85124 | 0.85124 | 0.85124 | 0.85124 | 0.85124 | ⋯ |
74 | 0.260331 | 0.194215 | 0.144628 | 0.31405 | 0.483471 | 0.508265 | 0.524793 | 0.57438 | 0.595041 | 0.615702 | 0.623967 | 0.628099 | 0.636364 | 0.640496 | 0.644628 | 0.644628 | 0.669422 | 0.669422 | 0.661157 | 0.661157 | 0.669422 | 0.681818 | 0.669422 | 0.673554 | 0.68595 | 0.698347 | 0.694215 | 0.710744 | 0.681818 | 0.702479 | 0.694215 | 0.702479 | 0.694215 | 0.694215 | 0.702479 | 0.706612 | 0.714876 | 0.739669 | 0.756198 | 0.760331 | 0.768595 | 0.752066 | 0.735537 | 0.743802 | 0.752066 | 0.731405 | 0.727273 | 0.714876 | 0.714876 | 0.714876 | 0.710744 | 0.706612 | 0.698347 | 0.690083 | 0.677686 | 0.677686 | 0.677686 | 0.681818 | 0.677686 | 0.690083 | 0.657025 | 0.661157 | 0.669422 | 0.652893 | 0.268595 | 0.194215 | 0.128099 | 0.322314 | 0.483471 | 0.520661 | 0.553719 | 0.582645 | 0.586777 | 0.615702 | 0.628099 | 0.628099 | 0.636364 | 0.640496 | 0.64876 | 0.665289 | 0.681818 | 0.681818 | 0.673554 | 0.677686 | 0.673554 | 0.694215 | 0.681818 | 0.681818 | 0.690083 | 0.694215 | 0.698347 | 0.68595 | 0.690083 | 0.698347 | 0.690083 | 0.706612 | 0.710744 | 0.702479 | 0.698347 | 0.702479 | ⋯ |
75 | 0.661157 | 0.661157 | 0.665289 | 0.669422 | 0.702479 | 0.727273 | 0.743802 | 0.756198 | 0.768595 | 0.760331 | 0.756198 | 0.752066 | 0.756198 | 0.760331 | 0.768595 | 0.772727 | 0.785124 | 0.789256 | 0.789256 | 0.789256 | 0.780992 | 0.772727 | 0.768595 | 0.768595 | 0.764463 | 0.764463 | 0.764463 | 0.768595 | 0.756198 | 0.756198 | 0.743802 | 0.739669 | 0.747934 | 0.743802 | 0.731405 | 0.727273 | 0.719008 | 0.714876 | 0.706612 | 0.702479 | 0.698347 | 0.694215 | 0.690083 | 0.681818 | 0.677686 | 0.657025 | 0.636364 | 0.632231 | 0.619835 | 0.603306 | 0.590909 | 0.578512 | 0.566116 | 0.566116 | 0.545455 | 0.53719 | 0.516529 | 0.479339 | 0.450413 | 0.429752 | 0.417355 | 0.409091 | 0.367769 | 0.252066 | 0.652893 | 0.652893 | 0.652893 | 0.661157 | 0.673554 | 0.698347 | 0.727273 | 0.735537 | 0.756198 | 0.756198 | 0.747934 | 0.743802 | 0.747934 | 0.764463 | 0.772727 | 0.780992 | 0.789256 | 0.793388 | 0.797521 | 0.801653 | 0.797521 | 0.789256 | 0.780992 | 0.780992 | 0.77686 | 0.77686 | 0.768595 | 0.77686 | 0.764463 | 0.760331 | 0.764463 | 0.764463 | 0.764463 | 0.756198 | 0.747934 | 0.727273 | ⋯ |
76 | 0.743802 | 0.756198 | 0.764463 | 0.772727 | 0.780992 | 0.785124 | 0.797521 | 0.801653 | 0.801653 | 0.81405 | 0.818182 | 0.81405 | 0.822314 | 0.826446 | 0.830578 | 0.834711 | 0.834711 | 0.838843 | 0.842975 | 0.847107 | 0.842975 | 0.847107 | 0.847107 | 0.847107 | 0.85124 | 0.85124 | 0.847107 | 0.842975 | 0.842975 | 0.834711 | 0.830578 | 0.822314 | 0.818182 | 0.818182 | 0.818182 | 0.822314 | 0.822314 | 0.822314 | 0.826446 | 0.826446 | 0.818182 | 0.805785 | 0.797521 | 0.789256 | 0.793388 | 0.789256 | 0.77686 | 0.764463 | 0.764463 | 0.743802 | 0.735537 | 0.72314 | 0.714876 | 0.706612 | 0.690083 | 0.661157 | 0.636364 | 0.599174 | 0.528926 | 0.512397 | 0.293388 | 0.0743802 | 0.239669 | 0.219008 | 0.739669 | 0.752066 | 0.760331 | 0.77686 | 0.780992 | 0.789256 | 0.793388 | 0.801653 | 0.805785 | 0.81405 | 0.818182 | 0.81405 | 0.826446 | 0.830578 | 0.834711 | 0.834711 | 0.838843 | 0.842975 | 0.842975 | 0.847107 | 0.847107 | 0.847107 | 0.847107 | 0.842975 | 0.842975 | 0.85124 | 0.85124 | 0.847107 | 0.838843 | 0.830578 | 0.834711 | 0.826446 | 0.81405 | 0.81405 | 0.818182 | 0.822314 | ⋯ |
77 | 0.202479 | 0.256198 | 0.322314 | 0.450413 | 0.57438 | 0.665289 | 0.714876 | 0.768595 | 0.797521 | 0.81405 | 0.826446 | 0.830578 | 0.830578 | 0.834711 | 0.834711 | 0.834711 | 0.830578 | 0.838843 | 0.838843 | 0.838843 | 0.842975 | 0.842975 | 0.847107 | 0.842975 | 0.85124 | 0.85124 | 0.847107 | 0.847107 | 0.842975 | 0.842975 | 0.838843 | 0.842975 | 0.842975 | 0.838843 | 0.838843 | 0.838843 | 0.830578 | 0.830578 | 0.826446 | 0.822314 | 0.818182 | 0.809917 | 0.801653 | 0.789256 | 0.797521 | 0.780992 | 0.727273 | 0.652893 | 0.578512 | 0.528926 | 0.46281 | 0.338843 | 0.305785 | 0.338843 | 0.276859 | 0.210744 | 0.202479 | 0.247934 | 0.227273 | 0.214876 | 0.268595 | 0.239669 | 0.210744 | 0.194215 | 0.22314 | 0.297521 | 0.376033 | 0.508265 | 0.61157 | 0.673554 | 0.727273 | 0.77686 | 0.809917 | 0.822314 | 0.826446 | 0.826446 | 0.830578 | 0.834711 | 0.830578 | 0.834711 | 0.830578 | 0.834711 | 0.842975 | 0.842975 | 0.842975 | 0.847107 | 0.847107 | 0.847107 | 0.855372 | 0.85124 | 0.847107 | 0.85124 | 0.842975 | 0.842975 | 0.838843 | 0.838843 | 0.838843 | 0.842975 | 0.842975 | 0.838843 | ⋯ |
78 | 0.338843 | 0.458678 | 0.681818 | 0.772727 | 0.785124 | 0.81405 | 0.838843 | 0.85124 | 0.847107 | 0.85124 | 0.855372 | 0.855372 | 0.85124 | 0.85124 | 0.847107 | 0.847107 | 0.85124 | 0.847107 | 0.847107 | 0.838843 | 0.834711 | 0.826446 | 0.822314 | 0.822314 | 0.805785 | 0.785124 | 0.768595 | 0.760331 | 0.752066 | 0.735537 | 0.735537 | 0.764463 | 0.760331 | 0.756198 | 0.756198 | 0.756198 | 0.747934 | 0.752066 | 0.739669 | 0.735537 | 0.714876 | 0.710744 | 0.706612 | 0.710744 | 0.706612 | 0.694215 | 0.690083 | 0.681818 | 0.673554 | 0.673554 | 0.665289 | 0.64876 | 0.640496 | 0.644628 | 0.644628 | 0.623967 | 0.603306 | 0.595041 | 0.553719 | 0.512397 | 0.491736 | 0.433884 | 0.177686 | 0.190083 | 0.371901 | 0.516529 | 0.72314 | 0.789256 | 0.780992 | 0.809917 | 0.847107 | 0.855372 | 0.859504 | 0.859504 | 0.855372 | 0.859504 | 0.85124 | 0.855372 | 0.859504 | 0.859504 | 0.863636 | 0.859504 | 0.859504 | 0.85124 | 0.842975 | 0.834711 | 0.834711 | 0.830578 | 0.822314 | 0.801653 | 0.780992 | 0.764463 | 0.752066 | 0.731405 | 0.727273 | 0.747934 | 0.772727 | 0.764463 | 0.756198 | 0.768595 | ⋯ |
79 | 0.516529 | 0.46281 | 0.280992 | 0.252066 | 0.247934 | 0.367769 | 0.57438 | 0.615702 | 0.661157 | 0.615702 | 0.681818 | 0.702479 | 0.735537 | 0.739669 | 0.743802 | 0.768595 | 0.789256 | 0.793388 | 0.797521 | 0.81405 | 0.822314 | 0.822314 | 0.826446 | 0.830578 | 0.830578 | 0.834711 | 0.838843 | 0.834711 | 0.834711 | 0.834711 | 0.826446 | 0.830578 | 0.830578 | 0.830578 | 0.834711 | 0.834711 | 0.830578 | 0.830578 | 0.830578 | 0.822314 | 0.826446 | 0.818182 | 0.81405 | 0.809917 | 0.801653 | 0.801653 | 0.797521 | 0.785124 | 0.772727 | 0.747934 | 0.739669 | 0.731405 | 0.719008 | 0.714876 | 0.702479 | 0.690083 | 0.665289 | 0.644628 | 0.623967 | 0.603306 | 0.582645 | 0.578512 | 0.541322 | 0.603306 | 0.516529 | 0.450413 | 0.293388 | 0.243802 | 0.235537 | 0.396694 | 0.566116 | 0.632231 | 0.652893 | 0.64876 | 0.694215 | 0.719008 | 0.752066 | 0.764463 | 0.768595 | 0.789256 | 0.801653 | 0.805785 | 0.809917 | 0.822314 | 0.822314 | 0.822314 | 0.830578 | 0.830578 | 0.830578 | 0.826446 | 0.822314 | 0.826446 | 0.826446 | 0.826446 | 0.822314 | 0.818182 | 0.826446 | 0.830578 | 0.838843 | 0.838843 | ⋯ |
80 | 0.5 | 0.590909 | 0.628099 | 0.669422 | 0.68595 | 0.706612 | 0.72314 | 0.739669 | 0.743802 | 0.743802 | 0.768595 | 0.772727 | 0.77686 | 0.785124 | 0.789256 | 0.797521 | 0.805785 | 0.801653 | 0.818182 | 0.81405 | 0.81405 | 0.818182 | 0.818182 | 0.818182 | 0.822314 | 0.822314 | 0.822314 | 0.826446 | 0.830578 | 0.818182 | 0.818182 | 0.818182 | 0.81405 | 0.818182 | 0.81405 | 0.826446 | 0.826446 | 0.826446 | 0.81405 | 0.797521 | 0.81405 | 0.805785 | 0.809917 | 0.797521 | 0.793388 | 0.793388 | 0.793388 | 0.772727 | 0.760331 | 0.768595 | 0.752066 | 0.739669 | 0.72314 | 0.698347 | 0.673554 | 0.677686 | 0.619835 | 0.61157 | 0.586777 | 0.520661 | 0.421488 | 0.301653 | 0.177686 | 0.140496 | 0.549587 | 0.561983 | 0.61157 | 0.673554 | 0.694215 | 0.706612 | 0.727273 | 0.743802 | 0.743802 | 0.756198 | 0.780992 | 0.780992 | 0.785124 | 0.789256 | 0.793388 | 0.797521 | 0.801653 | 0.805785 | 0.822314 | 0.809917 | 0.81405 | 0.81405 | 0.81405 | 0.818182 | 0.822314 | 0.822314 | 0.822314 | 0.822314 | 0.830578 | 0.826446 | 0.818182 | 0.822314 | 0.818182 | 0.826446 | 0.809917 | 0.826446 | ⋯ |
plot reconstruct imgs
function plot_img(df)
=Figure(resolution=(130*20,130*4))
fig
for i in 0:3
for j in 1:20
=i*20+j
idx=Axis(fig[i+1,j],yreversed=true)
ax=df[idx,:]|>Array|>d->reshape(d,w,h)
imgimage!(ax,img)
hidespines!(ax)
hidedecorations!(ax)
end
end
fig#save("./imgs/reconstruct-of-face.png",fig)
end
plot_img(df)